Multiscale adjoint waveform-difference tomography using wavelets

نویسندگان

  • Yanhua O. Yuan
  • Frederik J. Simons
چکیده

Full-waveform seismic inversions based on minimizing the distance between observed and predicted seismograms are, in principle, able to yield better-resolved earth models than those minimizing misfits derived from traveltimes alone. Adjoint-based methods provide an efficient way of calculating the gradient of the misfit function via a sequence of forward-modeling steps, which, using spectral-element codes, can be carried out in realistically complex media. Convergence and stability of full-waveform-difference adjoint schemes are greatly improved when data and synthetics are progressively presented to the algorithms in a constructive multiscale approximation using a (bi)orthogonal wavelet transform. Wavelets provide the nonredundant spectral decomposition that paves the way for the inversion to proceed successively from long-wavelength fitting to detailed exploration of the phases in the seismogram. The choice of wavelet class and type, the initial depth of the multiscale decomposition, and the minimization algorithms used at every level continue to play crucial roles in our procedure, but adequate choices can be made that test successfully on 2C elastic seismograms generated in toy models, as well as in the industry-standard 2D Marmousi model. Although for simplicity our inversion ignored surface waves by prior tapering and filtered removal, those also appeared to be very well matched in the final model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale adjoint waveform tomography for surface and body waves

We have developed a wavelet-multiscale adjoint scheme for the elastic full-waveform inversion of seismic data, including body waves (BWs) and surface waves (SWs). We start the inversion on the SW portion of the seismograms. To avoid cycle skipping and reduce the dependence on the initial model of these dispersive waves, we commence by minimizing an envelope-based misfit function. Subsequently, ...

متن کامل

Full-waveform adjoint tomography in a multiscale perspective

We discuss an algorithm to regularize elastic waveform inversions using wavelet-based constructive approximations of the data, synthetic and observed, in models that evolve as part of a gradient-based iterative scheme relying on forward and adjoint modeling carried out with a spectral-element method. For an elastic Marmousi model we show how our wavelet-based multiscale waveform inversion proce...

متن کامل

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

GPR Full Waveform Sensitivity Analysis using a FDTD Adjoint Method

Coarse structures involving low electrical contrasts can be profitably imaged by means of cheap and relatively simple methods such as travel time tomography, whereas fine structure involving sub-wavelength detail can only be recovered by inverting full-waveform data. Despite its complexity and high computation costs, full-waveform inversion of GPR data has become a popular tool for high-resolut...

متن کامل

Wavelets and Local Tomography

In this paper, formulas relating the Radon transform and Radon transform inversion to various wavelet and multiscale transformations, including the continuous wavelet transform, the semi{continuous wavelet transform of Mallat, steerable multiscale lters of Freeman and Adelson, and separable orthogonal and non{orthogonal wavelet bases, are given. The use of wavelets as a valuable tool in the loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014